27-28 September 2022

7th IRTAD Conference

Linked police and health data: how to apply capture-recapture to correct for under-reporting and bias

E. Amoros, C. Aksoy, A. Ndiaye, B. Laumon, B. Gadegbeku, J-L. Martin

Université Gustave Eiffel

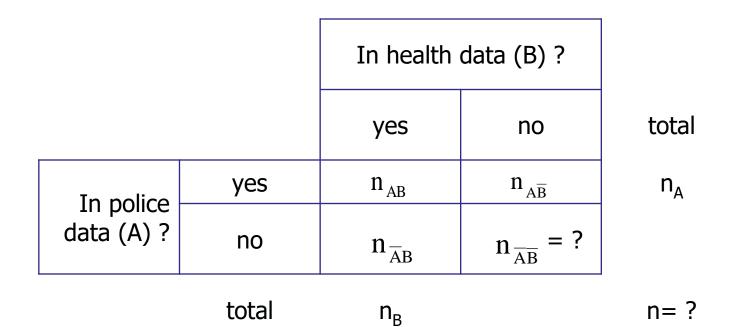
Université Claude Bernard

Linked police and health data

1) police data : in most countries

(killed = well-recorded in industrialized countries) Injured = large under-reporting and bias

2) Health data : National hospital discharge data = inpatients Emergency departments (ED) \approx outpatients The Rhone road trauma registry \approx outpatients and inpatients


Linked police and health data : under-reporting, Rhone example

annual mean	Police data	Health data	linked	total	Tot./po	ol Tot/health
2006-2016	2800	7600	1700	8600	3,1	1,1

France, Rhone county (1,8 M)		In health			
Heath data: Rhone road			yes	no	total
trauma registry = outpatients + inpatients	In polico	yes	1700	1100	2800
	In police data (A) ?	no	5900	?	
		total	7600		n=8600+ ?

Correcting for under-reporting: capture-recapture on linked police and health data

Simple 2-list method (IF capture-recapture conditions are met):

Petersen estimate :

Capture-recapture conditions

2 implicit conditions:

- same geographical area and same time period
- perfect identification of subjects of interest (injured, in a road crash) (implies same definition in both sources)

4 key conditions:

- close population
- perfect record-linkage
- independence between sources (registrations)
- homogeneity of capture : for a given source/ registration (ex: police), the different casualties have the same probability of being recorded, whatever their characteristics

discussion of some capture-recapture conditions

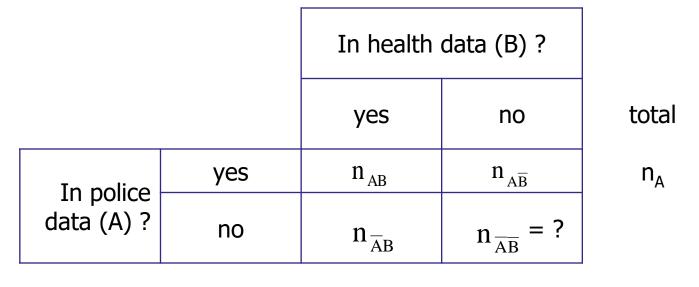
1) positive dependence between hospital and police data => capture-recapture estimate will be a lower bound

2) capture by police-reporting is not homogenous ; it usually varies with

- injury severity
- mode of transport (pedestrians, bicycle, M2W, car, etc)
- single-vehicle / multi-vehicle crash or crash opponent (yes/no)
- type of road network
- driver / passenger
- type of police
- 3) health-reporting slightly varies with
- injury severity

under-reporting and **biais** : example

7


annual mean	police	health	linked	total T	ot./pol. To	t/health
M2W, with opponent	557	865	371	1052	1,9	1,2
M2W, without opp.	96	1063	65	1094	11,4	1,0
bicycle, with opp.	157	332	100	389	2,5	1,2
bicycle, without opp.	6	916	4	919	146,4	1,0
car, with opp.	1092	2415	647	2859	2,6	1,2
car, without opp	269	1050	178	1140	4,2	1,1

total 2789 7563 1733 8619 3,1 1,1

France, Rhone county, 2006-2016 (health data= outpatients+ inpatients)

capture-recapture on each strata : mode * crash opponent

total n_B n=?

Petersen estimate :

$$\hat{\mathbf{n}} = \frac{\mathbf{n}_{A} \times \mathbf{n}_{B}}{\mathbf{n}_{AB}}$$

=> Capture-recapture with stratification on mode* crash opponent:

annual mean	Police data	Health data	linked	total	Tot/ police	Tot/ health	CRC	CRC/ pol.	CRC/ health.	
M2W, with opp.	557	865	371	1052	1,9	1,2	1300	2,3	1,5	L
M2W, without opp.	96	1063	65	1094	11,4	1,0	1573	16,4	1,5	
bicycle, with opp.	157	332	100	389	2,5	1,2	523	3,3	1,6	Ľ,
bicycle, without opp.	6	916	4	919	146,4	1,0	1437	229,1	1,6	
car, with opp.	1092	2415	647	2859	2,6	1,2	4073	3,7	1,7	
car, without opp	269	1050	178	1140	4,2	1,1	1583	5,9	1,5	
					,	- <i>,</i> -		· , -	,	

2789 7563 1733 8619 3,1 1,1 **12016** 4,3 1,6

total

But capture-recapture (CRC) with stratification on mode* crash opponent: pb with #MAIS3+

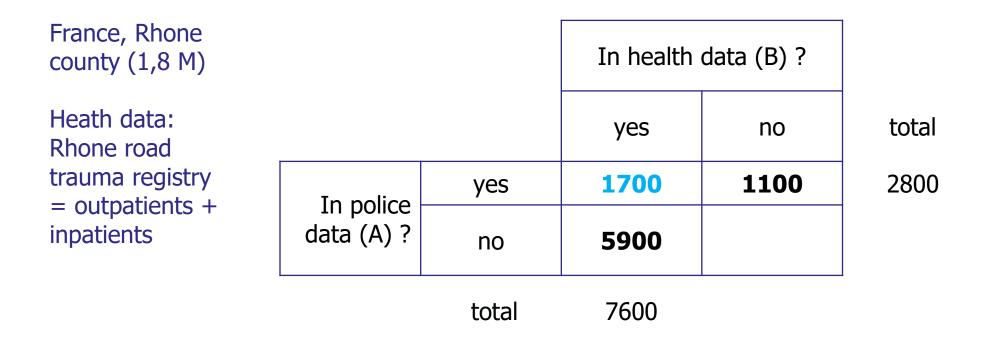
annual mean	Police data	Police MAIS3+	Pol prop3+	Health data	Heath MAIS3+	Health prop3+	total	Tot. Prop3+	CRC	CRC mais3+	CRC prop3+	
M2W, with opp.	557	103	18%	865	95	11,0%	1052	11,7%	1300	237	18%	
M2W, without opp.	96	29	30%	1063	61	5,7%	1094	6,3%	1573	470	30%	
bicycle, with opp.	157	20	13%	332	21	6,2%	389	6,9%	523	68	13%	
bicycle, without	6	2	37%	916	37	4,0%	919	4,1%	1437	533	37%	
car, with opp.	1092	57	5%	2415	49	2,0%	2859	2,3%	4073	212	5%	
car, without opp	269	31	12%	1050	38	3,6%	1140	4,1%	1583	183	12%	

2789 338 12% 7563 386 5,1% 8619 5,6% **12016 1952 16%**

Estimated number of MAIS3+ is too high and biased

total

discussion of some capture-recapture conditions


1) positive dependence between hospital and police data => capture-recapture estimate will be a lower bound

2) capture by police-reporting is not homogenous ; it usually varies with

- injury severity
- mode of transport (pedestrians, bicycle, M2W, car, etc)
- single-vehicle / multi-vehicle crash or crash opponent (yes/no)
- type of road network
- driver / passenger
- type of police
- 3) health-reporting slightly varies with
- injury severity

Linked police and health data : predict MAIS3+

Construct P(MAIS 3+ /1-2) on the linked dataset (MAIS from Health data)

P(MAIS 3+/1-2) as a function of crash and injured road user characteristics (from police data)

Apply the model to the subset "police data only" => predicted or observed MAIS3+ for all casualties observed in the Rhone county

Capture-recapture on mode * crash opponent * **MAIS** (1-2/3+):

annual mean	Police data N	Police 4AIS3+ p	Pol prop3+	Health data l	Heath MAIS3+	Health prop3+	total P	Tot. Prop3+	CRC	CRC CRC MAI3+prop3+
M2W, with opp.	557	103	18%	865	95	11,0%	1052	11,7%	1314	¹³⁰ 9,9%
M2W, without opp.	96	29	30%	1063	61	5,7%	1094	6,3%	1634	⁸² 5,0%
bicycle, with opp.	157	20	13%	332	21	6,2%	389	6,9%	527	³⁰ 5,6%
bicycle, without	6	2	37%	916	37	4,0%	919	4,1%	1464	⁵⁶ 3,8%
car, with opp.	1092	57	5%	2415	49	2,0%	2859	2,3%	4096	⁷² 1,8%
car, without opp	269	31	12%	1050	38	3,6%	1140	4,1%	1600	⁵² 3,3%

total 2789 338 12% 7563 386 5,1% 8619 5,6% 12175 549 4,5%

Capture-recapture :

However:

Some strata may contain **small frequencies**: ex: injured cyclists without crash opponent in police data

More than 3 variables are associated with under-reporting:

- injury severity,
- mode of transport
- single-multi vehicle crash,
- type of road network,
- driver/passenger
- type of police

=> multivariate modelling

Multivariate multinomial model

Multinomial response variable Y :

- 1= Casualties recorded in police data only
- 2= Casualties recorded in health data only
- 3= Casualties recorded in both

(disjoint subgroups)

Explanatory variables: those associated with under-reporting

- injury severity,
- mode of transport
- single-multi vehicle crash,
- type of road network,
- driver/passenger
- type of police

model with interaction between the 3 variables = stratification on 3 variables model with interaction between 2 var + var3 as main effect = no equivalent

Multivariate multinomial model

with SAS software:

```
PROC LOGISTIC data = collBUR out=modelCRC;
class source (ref = "1") mode_oppon (ref="carWithO") MAIScode (ref= "MAIS3p") / param = ref;
model source = mode_oppon MAIScode var3 var4 var5/ link = glogit;
weight decimal_freq; * freq=integer_freq;
format _all_;
ods output ParameterEstimates=est;
run;
```

Source : where the casualty is registered 1 = in police data only / 2 = in health data only, 3 = in police AND health data

Multivariate multinomial model

with R software:

modelCRC <- multinom(source ~ mode_oppon + MAIScode + var3 + var4 +var5, data=collBUR, weights=freq)

summary(modelCRC)
betas_modelCRC <- coef(modelCRC)</pre>

Multinomial model on French data :

- Type of police (3 categories) * type of road
- Daytime/nighttime
- Mode of transport * crash opponent
- MAIS (1-2 / 3+)
- Hospitalized (yes/no)
- (Age)
- (Gender)
- Driver /passenger

Thank you for your attention

UMRESTTE

UNITÉ MIXTE DE RECHERCHE ÉPIDÉMIOLOGIQUE ET DE SURVEILLANCE TRANSPORT TRAVAIL ENVIRONNEMENT

Sous la co-tutelle de :

UCBL • UNIVERSITÉ CLAUDE BERNARD LYON 1 UNIVERSITÉ GUSTAVE EIFFEL

emmanuelle.amoros@univ-eiffel.fr

Additional slides

Correcting for under-reporting and bias with capture-recapture on linked police and health data

ex: French Rhône county, 1996-2004, average annual frequencies

		In hospital		
		yes	no	
In police	yes	1700	1100	2800
In police data (A) ?	no	5900	?	
		7600		n=8600+?

