TOWARDS RESILIENT TRANSPORTATION SYSTEMS – THE ROLE OF ANALYTICAL TOOLS

ELISE MILLER-HOOKS

BILL & ELEANOR HAZEL ENDOWED CHAIR IN INFR ENG INTERIM DEPARTMENT CHAIR SID & REVA DEWBERRY DEPT OF CIVIL, ENV & INFR ENG GEORGE MASON UNIVERSITY CIVIL.GMU.EDU/MILLER

ROUNDTABLE ON TRANSPORT SYSTEM RESILIENCE INTERNATIONAL TRANSPORT FORUM (ITF) ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

PARIS HEADQUARTERS 15 SEPTEMBER 2023

Tools support resilience enhancement across applications

disruption recovery

Future systems

Multi-hazard resilience & infrastructure systems

Hazards

Definitions

Resilience

Natural (with or without notice): hurricane, EQ, fire,...
Malicious attack: coordinated, targeted, physical vs. cyber
Technical/accidental: design or implementations, human errors, aging materials, failed parts, production mistakes, organizational challenges,...
Specific: derailment in rail or shoaling in maritime system,...
Immediate or slow: tsunami vs. climate change

US Department of Homeland Security

Inherent

Inherent capability to absorb or cushion effects of disruption via its topological and operational attributes

Adaptive

Potential cost-effective, immediate actions that can be taken to preserve or restore system's ability to perform its intended function in disruption's aftermath

OECD

Ability to absorb and recover from shocks while adapting and transforming to face long-term stresses, change and uncertainty

Innate capability to resist disruption through material strength and builtin redundancy and excess

Initial conceptualization

Objective Maximize Expected Throughput overall Scenarios

Total Flow along Paths < Demand

Link Capacities

Budget Constraint on Recovery Actions

Can be decomposed by realization x independent deterministic NP-hard programs (P(x))

Exact solution:

Benders decomposition, column generation and Monte Carlo simulation with spatial and temporal dependencies for generating scenarios

Binary and Integrality Constraints

Computational experiments

10,000 random realizations of disruptions

Network

- 10 O-D pairs, 164 arcs, 390 paths
- 1261 recovery actions with total =\$76.6 million

Recovery budget: \$0-\$100,000

Point resilience

Budget (\$)	Resilience level
0	77%*
10,000	87%
50,000	97%
100,000	99%

Increase in resilience due so to recovery actions

Stabilization after ~2k realizations

Digital twin in place of mathematical model

- Replace complex operational constraints by digital twin
- Ordinary operational uncertainties & in recovery performance

Resilience as a function of Berth-on-Arrival (BoA) enabled post-event through recovery actions

Recovery actions: alternative QC/AGV power options

Resilience with preparedness – 2 stages

1st Stage Objective: Max Exp Throughput over Scenarios & # Preparedness Activities Constraint

2nd Stage Objective: Max Throughput by Scenario

Total Flow along Paths < Demand

Budget Constraint on Prep. & Rec. Actions

Nonlinear, two-stage SP

Integer L-shaped decomposition

Laporte & Louveaux 1993

Bilinearity (1st & 2nd stage

variables) eliminated through stage-wise decomposition

Recovery Activity Number Constraint

Binary and Integrality Constraints

Airport runways & taxiways With preparedness

-

-

					Cooper	ria C	anaratar				1				
,		Disaster events			Alligator cracking	Block cracking	Transverse cracking	Jet Blast	Raveling	Rutting	Potholes	surface Single crater	Slippery	Bleeding	
			Flood		-	::	-	-	-	-	- :	-	~	8 - 11	
Extreme climatic or geologic event		or geologic event	Snow/ic	e	-	~	~	-	-	-	-	-	✓	-	
			Very ho	t	11 <u>1</u> 2	<u>1</u> -21	18 <u>4</u> 9	-	12	✓		-	-	✓	
Da	amage	Repaired I	nternally		R ex	Repair xtern	⁻ ed ally	V 1	Veath for rep	er-dep bair du	enden Iration	t multi and co	plier osts	-	
rej	paired	Equipment set requirement	Duration (hr)	Cost (\$)	Durat (hr)	ion)	Cost (\$)	1	2	3	4	5	6	-	
All	ligator acking	1,2,4,8,10,15,16	5	2510	9		4267	1	10	1	10	1.5	2	-	
Optin E	Block acking	2,11,12	2	736	6		1251.2	1	10	1	10	1	10		*
C Trai	nsverse acking	2,11,12	2	736	6		1251.2	1	10	1	10	1	10		VFR feasible region
Jet	t Blast	2,4,5,8,9,10,15	4	1912	8		3250.4	1	10	1	10	1.5	2		
Ra	aveling	2,4,5,8,9,10,15	4	1912	8		3250.4	1	10	1	10	1.5	2	easible gion	
Ru	utting	2,4,5,8,9,10,15	4	1912	8		3250.4	1	10	1	10	1.5	2		Total a
Array po	/ of small tholes	1,2,4,5,6,16	3	1407	7		2391.9	1	10	1	10	1.5	2		ann
Mod A	single rater	1,2,3,4,5,6,7,15,16, 17,19	6	4374	10		7435.8	1	10	1	10	1.5	2	eft-directio	n flow
Sli SL	ippery ur <mark>fa</mark> ce	2,4,14,15,18	1	461	5		783.7	1	1.5	1	1.5	2	10	= 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\varphi_1 = 1$
Ble	eeding	2,4,5,6,13,17	3	1665	7		2830.5	1	10	1	10	1.5	2	Min takeo	f length requirement

Functioning runway length > min MOS? Calculation of functioning runway length

Runways Taxiways --- Dummy links Network nodes

Optimal budget allocation on ext/int resources

Resilience indifference curves

Probability runway configuration selected

0.4 0.3 Probability 04|04 13 13 0.2 ■ 04 | 13 22|13 0.1 0 Coping capacity 25000,4 25000,8 50000,4 50000,8 **Runway configuration**

*

- Affected users may rethink routes
- Decentralized response of users

Information revealed

DMLC stage

Decision variables

- Bi-level structure
 - UL: 3-stage SP determine investments
 - LL: response of users: partial UE
 - Solution at Stackelberg equilibrium

ξ1*

Mitigation

 γ^1

Z2

Preparedness

 $\gamma^2(\xi^2)$

Response stage

 $\gamma^3(\xi^3)$

Traffic and power networks interdependence

Whose resilience is it anyway?

Unmet demand in power when prioritize roadways

Critical infrastructure-based societal systems Simulation-optimization

Disruptions Cascading in Intermodal Network

Formulate multi-port protective investment problem

- Simultaneous consideration of multiple SMPECs, each modeling an individual port and its market
- b) Together Stochastic Equilibrium Problem with Equilibrium Constraints (EPEC) – accounts for common market

- **1. No investment:** Reduces to lower level
- 2. Restricted game: Investments in own facilities permitted
- 3. Unrestricted game: Investments in all ports permitted
- **4. Semi-restricted game:** Only a portion of ports willing to invest in another port
- 5. System perspective: Single, centralized budget
- 6. Coalitions: Limited & semi-restricted with shared capacity

Whose resilience? System (total OD demand served) Port (port throughput/profit) Shippers (cost)

Implications of port-related workforce shortages on global maritime performance

- Linear, square and exponential port handling rates
- Solution by Benders decomposition and column generation

- How does shortage in one region affect other regions?
- What shortage levels can be absorbed?
- Design alliance strategy to reduce risk exposure

Prioritizing critical facilities

CRITICA

ESTORIN

RESILIENCE ∞ FINDINGS

Hospital services restored earlier if prioritized

Hospital resilience With hospitals: 26 Without hospitals: 28 Full-system resilience With hospitals: 89 Without hospitals: 86

Resilience: expected time to hospital recovery over all scenarios

Prioritizing hospitals
 quicker restoration of road links that support access to hospitals & lifeline elements

Human infrastructure as a lifeline

Resilience

Hospital

- **People** incorporated: 13
- o No people incorporated: 33

Fueling station

- People incorporated: 11
- o No people incorporated: 35

Hazard events

- Sudden impact, one-time events
- Take immediate adaptive actions
 - Recovery
 - o **Response**
 - Restoration
- Measurements of continuity of operations/rebound

Climate change

- Slow process that changes environment
 - $_{\odot}$ ~ probabilistic SLR levels over long horizon
- Added recurrent or episodic events
 - w/ increasingly harmful disruption occurrences
- Threatens long-term sustainability of infrastructure
- Requires multi-temporal approach
 - decadal investments with daily impacts
- Long-term protective investment planning for safeguarding performance

Investing in transport infrastructure for climate change

Goal: minimize long-term costs for roadway network prone to flooding

 Upper level (government): multi-stage SP- determines investments (location, timing, extent) and post-event recovery actions

to minimize direct (repairs) + indirect costs (disruption to users) DVs: seawall location/height, height for raising link, drainage improvement, rebuilding link

Lower level (system users): travel times from UE traffic formulation DVs: traffic flows during flooding events

Bi-level, Stochastic Model Structure

Comparing no-investment scenario & investment-allowed

◦ Cost of inaction > cost of preparedness □ justifies investment

54% reduction in added costs due to the implementation of protective investments

prediction?

Washington, D.C. Area

Planning for a stochastic future (i) Long-term costs of no-investment? (ii) How optimal investment decisions change with different future SLR and flooding event scenarios? (iii) How system performs if investments are made for one future scenario but a different scenario is realized? (iv) What is value of hedging against multiple possible futures? (v) How much improvement in investment effectiveness is gained through accurate

STOCHASTIC FUTURE

 A real options approach to transportation infrastructure protection investment timing

- These tools provide examples of how mathematical modeling and algorithms can support decision-making
 - \circ on investments to
 - bolster continuity of operations & resilience in
 - ✓ transportation systems
 - ✓ lifelines and services transportation systems support

Graduated Lisa Chen **Rahul Nair** Hakob Avetisyan Reza Faturechi **Xiaodong Zhang** Seksun Moryadee Mersedeh Tariverdi Ali Asadabadi Neza Vodopivec Kevin Denny (UG) Hossein Fotouhi Bahar Shahverdi Sohrab Mamdoohi Weiwen Zhou Wenjie Li **Qiang Chen**

Continuing Students

Hadi Ghayoomi Ashkan Zare

Resilience journal articles

- 1. Nair, R., H. Avetisyan and E. Miller-Hooks (2010). "Resilience of Ports, Terminals and Other Intermodal Components," Transportation Research Record 2166, 54-65.
- 2. Chen, L. and E. Miller-Hooks (2012). "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science 46, 109-123.
- 3. Miller-Hooks, E., X. Zhang and R. Faturechi (2012). "Measuring and Maximizing Resilience of Freight Transportation Networks," Computers and Operations Research 39(7), 1633–1643.
- 4. Faturechi, R. and E. Miller-Hooks (2014). "Mathematical Framework for Quantifying and Optimizing Protective Actions for Civil Infrastructure Systems," Computer-Aided Civil and Infrastructure Engineering Systems: Special Issue on Sustainability and Resilience of Spatially Distributed Civil infrastructure Systems 29, 572-589.
- 5. Faturechi, R., E. Levenberg and E. Miller-Hooks (2014). "Evaluating and Optimizing Resilience of Airport Pavement Networks," Computers and Operations Research 43, 335–348.
- 6. Zhang, X. and E. Miller-Hooks (2014). "Scheduling Short-Term Recovery Activities to Maximize Transportation Network Resilience," ASCE Journal of Computing in Civil Engineering 04014087, 1-10.
- 7. Faturechi, R. and E. Miller-Hooks (2014). "Travel Time Resilience of Roadway Networks under Disaster," Transportation Research Part B 70, 47-64.
- 8. Faturechi, R. and E. Miller-Hooks (2015). "Measuring the Performance of Transportation Infrastructure Systems in Disasters: A Comprehensive Review," ASCE Journal of Infrastructure Systems 21(1), 04014025-1 to 04014025-15.
- 9. Zhang, X., E. Miller-Hooks and K. Denny (2015). "Assessing the Role of Network Topology in Resilience of Transportation Systems," Journal of Transport Geography 46, 35-45.
- 10. Levenberg, E., E. Miller-Hooks, A. Asadabadi and R. Faturechi (2016). "Resilience of Networked Infrastructure with Evolving Component Conditions," ASCE Journal of Computing in Civil Engineering 04016060, 1-9.
- 11. Asadabadi, A. and E. Miller-Hooks. "Optimal Transportation and Shoreline Infrastructure Investment Planning under a Stochastic Climate Future," Transportation Research -Part B 100, 156-174.
- 12. Fotouhi, H., S. Moryadee and E. Miller-Hooks (2017). "Quantifying the Resilience of an Urban Traffic Signal-Power Coupled System," Reliability Engineering & Systems Safety 163, 79-94.
- 13. Asadabadi, A. and E. Miller-Hooks. "Co-opetition in Enhancing Global Port Network Resiliency: A Multi-leader, Common-follower Game Theoretic Approach," Transportation Research - Part B 108, 281-298.
- 14. Tariverdi, M., E. Miller-Hooks and T. Kirsch (2018). "Strategies for Improved Hospital Response to Mass Casualty Incidents," Disaster Medicine and Public Health 12 (6), 778-790.
- 15. Tariverdi, M., H. Fotouhi, S. Moryadee, E. Miller-Hooks (2019). "Health Care System Disaster Resilience Optimization given its Dependence on Interdependent Critical Lifelines," ASCE Journal of Infrastructure 25(1), 04018044-1 to 04018044-16.
- 16. Vodopivec, N. and E. Miller-Hooks (2019). "Transit System Resilience: Quantifying the Impacts of Disruptions on Diverse Populations," Reliability Engineering & Systems Safety 191, 106561.
- 17. Shahverdi, B., M. TariVerdi and E. Miller-Hooks (2020). "Assessing Hospital System Resilience to Disaster Events involving Physical Damage and Demand Surge," Socio-Economic Planning Sciences 70, 100729.
- 18. Asadabadi, A. and E. Miller-Hooks (2020). "Maritime Port Network Resiliency and Reliability through Co-opetition," Tr. Res. Part E, 137, 101916.
- 19. Zhou, C., J. Xu, W. Zhou, E. Miller-Hooks, C. Chen, L. Lee and E. Chew (2021). "A Decision Support Digital-Twinning Framework for Maintaining a Resilient Port," Decision Support Systems 143, 113496.
- 20. Ghayoomi, H., K. Laskey, E. Miller-Hooks, C. Hooks and M. Tariverdi (2021). "Assessing Resilience of Hospitals to Cyberattack," Digital Health 7, 1-15.
- Li, W., A. Asadabadi and E. Miller-Hooks (2022). "Enhancing Resilience through Port Collaboration in Maritime Freight Networks," Tr. Res. Part A 1, 1-23.
- 22. Miller-Hooks, E., "Constructs in Infrastructure Resilience Framing From Components to Community Services and the Built and Human Infrastructures on Which They Rely," IISE Transactions 55:1, 43-56.
- 23. Li, W. and E. Miller-Hooks, "Understanding the Implications of Port-Related Workforce Shortages on Global Maritime Performance through the Study of a Single Carrier-Alliance," in press in Maritime Economics and Logistics.
- 24. Chen, Q., E. Miller-Hooks, E. Huang, "Transportation Infrastructure Readiness for Post-Pandemic Supply Chain Transformation for Greater National Resilience," in second round of reviews.
- 25. Shahverdi, B., E. Miller-Hooks and S. Isaac, "Decision Support for Prioritizing Critical Societal Services in Optimal Post-Disaster Critical Lifeline Recovery," in review.
- 26. Shahverdi, B., E. Miller-Hooks and S. Isaac, "Integrating Human Infrastructure in Post-disaster Critical Lifeline Restoration Scheduling," in review.

Thanks!

Elise Miller-Hooks miller@gmu.edu civil.vse.gmu.edu/miller