THE FUTURE OF TRANSPORT

Crash Data systems: Successful Implementation to Safe Systems application in India

John Fletcher, Shawon Aziz and Tony Mathew

Background

© 2022 TRI 1td

- Crash Data is essential for good road safety strategy development
- Broadly available in High Income Countries
- Patchy in Low and Middle Income countries
- LMICs are where the most pressing road safety problems are globally

LMICs, HICs, road safety and crash data

- The road systems in LMICs differ significantly from HICs
 - HIC approaches will not work the same in LMICS
- We need to fully understand the safety challenges in LMICs –
 - This needs good Crash Data from these countries
 - Crash data has a vital role to play in implementing Safe System solutions

 Example of real success in India

State of Himachal Pradesh (HP) – India

Features of the State

- Rural / hilly
- 7M people
- 31,000 km road
- 300+ Police stations
- 1,400+ Road fatalities per year
 - 2,541 France
- Road death rate 12.2 per 100,000
 population (2020)

TRL in Himachal Pradesh since 2015 towards institutional changes

SL

© 2021 TRL Ltd

Crash data innovation

- Mobile devices used to collect crash data at scenes
- Scene photographs
- Available with crash details
- Accurate locations

iMAAP implementation: RADMS

Success factors:

- Systems/ road safety review
- Training 300+ police stations
- Accident Data Management Cell (ADMC) developed
- Agreed S.O.P. for police:
 - Standard Operation
 Procedures
- 2017 support project to the crash data system
- National blackspot advice
 © 2022 TRL Ltd
 developed

STANDARD OPERATING PROCEDURE (SOP) (Version 3)

CONSULTANCY SERVICES FOR THE PROVISION OF A ROAD ACCIDENT DATA MANAGEMENT SYSTEM (RADMS)

Prepared For: Himachal Pradesh State Roads Project (HPSRP) Contract Ref: Contract - PW-SRP/RIDC/Procurement-RADMS/2014-12

Date: 20-Apr-2017

Phase 2: Data-led interventions/ Road Safety Action Plan

Consultancy Services for Road Safety Advisory for the State of Himachal Pradesh

- Technical support/ capacity building
- Focus: Engineering and Police/ Emergency Response
- development 4 demonstration corridors
- Focus on 3 Regions
 - Trial/Testing/ Evaluation innovative approaches
- Road Safety Action Plan for the State
 - Wide roll-out of successful measures 2023+

Safe Systems based approaches – supported by good crash data

the future of transport

Digging in to identify real risks and safety issues

Killed & Serious Injuries (KSIs)

Patterns – KSIs - top 3 crash types:

Crash numbers:

Casualty numbers:

HICs – expect greater casualties per crash for Head on

© 2022 TRL Ltd

Patterns – top 3 crash types – Head on, Ped and RoR

Crash numbers:

Casualty numbers:

Identifies buses/ drivers a target for interventions – across pillars

© 2022 TRL Ltd

Reactive use of crash data: Hotspots/ Blackspots

 Investigating crash prone sections

- Cluster/ route analysis
 - Barrier improvements?
 - Lighting at some locations?
 - Delineation?
 - Speed management?

3	Accident Reference	19022017 -44-1032 32		14012018 -44-1752 33	17022018 -44-1116 38	26122019 -44-1416 58
	Accident Time	20:00	22:00	18:30	19:00	19:45
21062017-44-172059	No. of Injuries	3	0	12	3	5
CIn 19022017-44-103232	Light Condition	Darkness -no street lights		Darkness -no street lights		Darkness -no street lights
26122019-44-141658	Weather Condition	\$				
3	Vehicle Type 1	Motor Car	Truck	Motor Car	Motor Car	Motor Car
Road	Accident Factor	Dangerou s driving	Turning without care	Turning without care	Blind bend	Speed
Sarchu	Horizontal Features	Slight road curve	Sharp curve	Sharp curve	Sharp curve	Straight road

© 2021 TRL Ltd

Route 1 - Fatalities by collision type

Shimla Cart road & MDR-16

Total Fatalities by Collision Type							Fatalities (2016-2020) by		
Collision Type	2016	2017	2018	2019	2020	Total			
Hit pedestrian	5	2	3	3	5	18	Collision type Hit parked		
Run off Road		2	2	5	1	10	vehicle		
Hit in-side	1	1			2	4	4% Head on Hit		
Hit in rear	1	1	1	3	1	7	20% pedestrian		
Fell Down from Vehicle		1		2		3	Fell Down 33%		
Hit parked vehicle		1	1			2	from Vehicle Hit in rear		
Head on	3	2	1	5		11	5% 13% Run off		
Hit object in road						0	Hit in side Road 18%		
Total	10	10	8	18	9	55	7%		

Crash data indicates pedestrian casualties occur even on rural sections

Route Action Plan: iRAP & Crash patterns

- ✓ Footpath, walkway & safe crossing points for pedestrians
- ✓ Crash barriers
- ✓ Edge line & center lines (with chevron marking) to reduce head-on collisions
- $\checkmark\,$ Extra widening on curves
- ✓ Road studs on edge lines
- ✓ Speed limit signs & no overtaking signs
- ✓ Redesign of junctions

Summary: Crash data used intensively - Safe System approaches

12 minutes not enough – scratching surface – come and talk to me!

- LMIC Technical assistance projects don't generally have good crash data
- Supports far better targeting of limited resources:
 - Focus on Crash Types resulting in most KSIs
 - Identify target regions and corridors where efforts will have greatest impact
 - Shapes the Safe System trial approaches
 - Can be evaluated
- Underlines why crash data is so relevant to Safe System strategies
 - Safety Performance Indicators reducing focus on Crash Data????

Identifies real issues, permits evaluation and identifies different patterns from HICs

Police assigned factors

