IMPACTS OF DEMAND MANAGEMENT AND PRICING POLICIES ON URBAN TRAVEL DEMAND AND CO2 EMISSIONS

Dr. Alexandra Millonig, AIT Austrian Institute of Technology
DEMAND MANAGEMENT
Where mobility demand originates and how it can be influenced
DEMAND FOR MOBILITY OPTIONS

“CAN” … but lacking acceptance

“WANT“ … but lacking access or ability
CHANGE POTENTIAL

high willingness to change (~20%)

no willingness to change (~10%)

Population

„WANT“ … but lacking access or ability

„CAN“ … but lacking acceptance

[project „pro:motion“, representative survey in Austria]
CHANGE STRATEGIES

"CAN" … but lacking acceptance

"WANT“ … but lacking access or ability

Population

FACILITATE
improve access
strengthen ability

PERSUADE
motivate
incentivise

FORCE
coerce
penalise

You can
PRICING POLICIES
How to use monetary measures to steer demand
ROAD PRICING SCHEMES

<table>
<thead>
<tr>
<th>Category</th>
<th>Primary goal</th>
<th>Financial benefits</th>
<th>Reduction congestion</th>
<th>Reduction pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Tolls</td>
<td>Increase revenues</td>
<td>***</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>Value pricing</td>
<td>Increase revenues and reduce congestion</td>
<td>**</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>High Occupancy Toll</td>
<td>Increase revenues</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>Travel distance based charging</td>
<td>Increase revenues, improve the equilibrium between demand and supply of mobility</td>
<td>***</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Travel time based charging</td>
<td>Increase revenues, improve the equilibrium between demand and supply of mobility</td>
<td>***</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Road Space Rationing</td>
<td>Reduce congestion within the urban area</td>
<td>-</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>Cordon-based charging/Zonal Schemes/Satellite-based road pricing schemes</td>
<td>Reduce congestion within the urban area</td>
<td>**</td>
<td>***</td>
<td>*</td>
</tr>
</tbody>
</table>

[Gervasoni and Sartori, 2007]
CONGESTION CHARGING SINGAPORE

- Area Licensing Scheme (ALS) introduced 1975
- Paper system of daily licenses for vehicles entering the central zone during peak traffic periods
- Electronic Road Pricing (ERP) since 1998
- Peak fee (each entry) S$ 4 (€ 2,5)
- Aim: reduce traffic during peak hours

[DOT - FHWA, 2017]
CONGESTION CHARGING SINGAPORE - EFFECTS

• Traffic reduction:
 • ALS: reduction of entering cars: - 73% (vehicles: -44%)
 • Shift to public transit and shift in trip departure times
 • Speed in area increased by 20% or more during morning peak, speed on bypass route dropped by 20%

• Environment and emissions
 • Drop in CO levels during morning peak below previous noon level
 • NOx decreased in monthly average values
CONGESTION CHARGING LONDON

- Introduced 2003, extended 2007
- 170 camera-equipped access points
- Daily charge for driving or parking a vehicle on public roads in the zone (fee: £ 5, currently £ 11,50 - € 14,50)
- Between 07:00 and 18:00, Monday to Friday
- Only 50% of cars get fully charged
- Aim: to reduce traffic and to raise revenues for re-investment in transport

[Croci and Douvan, 2016]
CONGESTION CHARGING LONDON - EFFECTS

• Traffic reduction:
 • Reduction of vehicle movements (2002 – 2006: -21%, trend ongoing)
 • Reduction of congestion -30% after introduction, meanwhile back on pre-charging levels
 • Increase in public transport and bicycle usage
 • Bus speed increased only in the first year

• Environment and emissions
 • NOx emissions: -13%
 • PM10 emissions: -15%
 • CO2 emissions: -16%

[Croci and Douvan, 2016]
CONGESTION CHARGING STOCKHOLM

- Toll cordon around inner city
- 18 camera-equipped control points
- Introduced 2006 as trial period
- Cost of passing the cordon between SEK 10 and 20 (€ 1-2), daily maximum charge SEK 60
- Fees vary according to peak hours
- Aim: to reduce congestion in the inner city especially during the peak hours, and to improve the environment

[Croci and Douvan, 2016]
CONGESTION CHARGING STOCKHOLM - EFFECTS

• Traffic reduction:
 • Reduction of passages across cordon: -28% following introduction, now -20% on average
 • Car commuting trips: -24% (99% switched to transit)
 • Non-commuting trips: -22%
 • Commercial traffic: -15%

• Environment and emissions
 • PM10 emissions: -15%
 • CO2 emissions: -14%

[Croci and Douvan, 2016]
PARKING MANAGEMENT VIENNA

• Started 1993, 3 extension phases
• Entire districts or large connected parts thereof turned into short-term parking zones
• Permanent parking permits for residents (annual fee € 90)
• Aim: reduction of car traffic and environmental pollution, improvement of public transit and overall parking situation, more space, higher traffic safety
• Reduction in average parking spaces occupancy rates (morning: 109% to 71% at first extension phase)
• Reduction in unauthorized parking by 86% (morning) and 76% (evening)
• Reduction in non-residential parked cars by two thirds (morning)
• Spillover effects in adjacent districts
• Reduction in car traffic by 26%
• Modal shift to Public Transport (accompanied by other measures, e.g. introduction of annual public transit pass for € 365)
LEARNINGS
Which aspects improve or limit the effectiveness of pricing measures
SUPPORTIVE MEASURES

• Target „superusers“
 • San Francisco/Boston: only very few driver sources are main contributors to repeated congestion
 • Shifting about 25% from the 1.5 – 2% highest contributors can decrease congestion by 14 – 18%

• Improve alternatives
 • Singapore: incentivising off-peak public transit to compensate high shift in demand (gamification approach: lottery)
 • Vienna: improvement of qualitative and quantitative public transit plus cheap annual ticket
REBOUND EFFECTS AND COPING STRATEGIES

• Behavioural Economics
 • „Irrational“ reactions counteract desired effects
 • Fines become prices: setting a fine for an undesired behaviour may invite this behaviour (people „pay“ for it)

• Coping strategies
 • People become creative when avoiding barriers
 • Singapore: incentivising high occupancy vehicles has been ceased, as people hired passengers for their trips
THANK YOU!

Dr. Alexandra Millonig
Center for Mobility Systems
Dynamic Transportation Systems
alexandra.millonig@ait.ac.at
REFERENCES

