

IMPACTS OF DEMAND MANAGEMENT AND PRICING POLICIES ON URBAN TRAVEL DEMAND AND CO2 EMISSIONS Dr. Alexandra Millonig, AIT Austrian Institute of Technology

AIT AUSTRIAN INSTITUTE OF TECHNOLOGY

AIT Austrian Institute of Technology

Seibersdorf Labor GmbH Nuclear Engineering Seibersdorf GmbH

Energy	Health &	Digital Safety &	Vision, Automation &
	Bioresources	Security	Control
Mobility Systems	Low-Emission	Technology	Innovation Systems &
	Transport	Experience	Policy

DEMAND MANAGEMENT

Where mobility demand originates and how it can be influenced

DEMAND FOR MOBILITY OPTIONS

CHANGE POTENTIAL

CHANGE STRATEGIES

PRICING POLICIES

How to use monetary measures to steer demand

ROAD PRICING SCHEMES

Category	Primary goal	Financial benefits	Reduction congestion	Reduction pollution
Road Tolls	Increase revenues	***	**	*
Value pricing	Increase revenues and reduce congestion	**	***	**
High Occupancy Toll	Increase revenues	*	**	*
Travel distance based charging	Increase revenues, improve the equilibrium between demand and supply of mobility	***	**	**
Travel time based charging	Increase revenues, improve the equilibrium between demand and supply of mobility	***	**	**
Road Space Rationing	Reduce congestion within the urban area	-	***	*
Cordon-based charging/ Zonal Schemes/ Satellite-based road pricing schemes	Reduce congestion within the urban area	**	***	*

CONGESTION CHARGING SINGAPORE

- Area Licensing Scheme (ALS) introduced 1975
- paper system of daily licenses for vehicles entering the central zone during peak traffic periods
- Electronic Road Pricing (ERP) since 1998
- Peak fee (each entry) S\$ 4 (€ 2,5)
- Aim: reduce traffic during peak hours

CONGESTION CHARGING SINGAPORE - EFFECTS

• Traffic reduction:

- ALS: reduction of entering cars: 73% (vehicles: -44%)
- Shift to public transit and shift in trip departure times
- Speed in area increased by 20% or more during morning peak, speed on bypass route dropped by 20%
- Environment and emissions

NOx decreased in monthly average values

CONGESTION CHARGING LONDON

- Introduced 2003, extended 2007
- 170 camera-equipped access points
- Daily charge for driving or parking a vehicle on public roads in the zone (fee: £ 5, currently £ 11,50 € 14,50)
- Between 07:00 and 18:00, Monday to Friday
- Only 50% of cars get fully charged
- Aim: to reduce traffic and to raise revenues for re-investment in transport

CONGESTION CHARGING LONDON - EFFECTS

• Traffic reduction:

- Reduction of vehicle movements (2002 2006: -21%, trend ongoing)
- Reduction of congestion -30% after introduction, meanwhile back on pre-charging levels
- Increase in public transport and bicycle usage
- Bus speed increased only in the first year

- Environment and emissions
 - NOx emissions: -13%
 - PM10 emissions: -15%
 - CO2 emissions: -16%

CONGESTION CHARGING STOCKHOLM

- Toll cordon around inner city
- 18 camera-equipped control points
- Introduced 2006 as trial period
- Cost of passing the cordon between SEK 10 and 20 (€ 1-2), daily maximum charge SEK 60
- Fees vary according to peak hours
- Aim: to reduce congestion in the inner city especially during the peak hours, and to improve the environment

CONGESTION CHARGING STOCKHOLM - EFFECTS

• Traffic reduction:

- Car commuting trips: -24% (99% switched to transit)
- Non-commuting trips: -22%
- Commercial traffic: -15%

- Environment and emissions
 - PM10 emissions: -15%
 - CO2 emissions: -14%

PARKING MANAGEMENT VIENNA

- Started 1993, 3 extension phases
- Entire districts or large connected parts thereof turned into short-term parking zones
- permanent parking permits for residents (annual fee € 90)
- Aim: reduction of car traffic and environmental pollution, improvement of public transit and overall parking situation, more space, higher traffic safety

1st district since 1-7-1993

6th to 9th district since 1-9-1995

4th and 5th district since 2-6-1997

2nd and 20th district since 1-3-1999

3rd **district** since 2-11-1999

15th district, City Hall Area since 1-9-2005

Parts of the 12th, 14th, 15th, 16th and 17th districts since 1-10-2012

Duration of Parking: 2hours Mon – Fri 9am to 10pm Sath, Sun and Holidays 6pm to 22pm

PARKING MANAGEMENT VIENNA - EFFECTS

- Reduction in average parking spaces occupancy rates (morning: 109% to 71% at first extension phase)
- Reduction in unauthorized parking by 86% (morning) and 76% (evening)
- Reduction in non-residential parked cars by two thirds (morning)
- Spillover effects in adjacent districts
- Reduction in car traffic by 26%
- Modal shift to Public Transport (accompanied by other measures, e.g. introduction of annual public transit pass for € 365)

LEARNINGS

Which aspects improve or limit the effectiveness of pricing measures

SUPPORTIVE MEASURES

- Target "superusers"
 - San Francisco/Boston: only very few driver sources are main contributors to repeated congestion
 - Shifting about 25% from the 1.5 2% highest contributors can decrease congestion by 14 – 18%
- Improve alternatives
 - Singapore: incentivising off-peak public transit to compensate high shift in demand (gamification approach: lottery)
 - Vienna: improvement of qualitative and quantitative public transit plus cheap annual ticket

REBOUND EFFECTS AND COPING STRATEGIES

- Behavioural Economics
 - "Irrational" reactions counteract desired effects
 - Fines become prices: setting a fine for an undesired behaviour may invite this behaviour (people "pay" for it)
- Coping strategies
 - People become creative when avoiding barriers
 - Singapore: incentivising high occupancy vehicles has been ceased, as people hired passengers for their trips

/ / / / / /

//////

THANK YOU!

Dr. Alexandra Millonig

Center for Mobility Systems Dynamic Transportation Systems

alexandra.millonig@ait.ac.at

REFERENCES

- Gervasoni and Sartori, 2007. Il Road Pricing: Esperienze Internazionali, Costi, Benefici e Sostenibilità Finanziaria. Liuc Papers, 198. Serie Impresa e Mercati Finanziari, 6. <u>http://www.biblio.liuc.it/liucpap/pdf/198.pdf</u>
- DOT FHWA, 2017. Lessons Learned From International Experience in Congestion Pricing. <u>https://ops.fhwa.dot.gov/publications/fhwahop08047/02summ.htm</u>
- Croci and Douvan, 2016. Urban Road Pricing: A Comparative Study on the Experiences of London, Stockholm and Milan. Working Paper n. 85, IEFE - The Center for Research on Energy and Environmental Economics and Policy at Bocconi University. <u>ftp://ftp.repec.org/opt/ReDIF/RePEc/bcu/papers/iefewp85.pdf</u>
- Goletz, Heinrichs and Feige, 2016. Mobility Trends in Cutting Edge Cities. Ifmo, <u>https://www.ifmo.de/files/publications_content/2016/ifmo_2016_mobility_cutting_edge_cities_en.pdf</u>
- Vienncouver Smart.City.Lab, 2017. Learning from Vienna: Effective Parking Management. <u>https://www.vienncouver.com/2015/10/learning-from-vienna-effective-parking-management/</u>